首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2132篇
  免费   105篇
  国内免费   48篇
  2024年   3篇
  2023年   25篇
  2022年   27篇
  2021年   31篇
  2020年   50篇
  2019年   60篇
  2018年   67篇
  2017年   36篇
  2016年   60篇
  2015年   54篇
  2014年   108篇
  2013年   164篇
  2012年   74篇
  2011年   155篇
  2010年   103篇
  2009年   151篇
  2008年   141篇
  2007年   141篇
  2006年   119篇
  2005年   94篇
  2004年   100篇
  2003年   54篇
  2002年   63篇
  2001年   31篇
  2000年   33篇
  1999年   26篇
  1998年   19篇
  1997年   23篇
  1996年   17篇
  1995年   26篇
  1994年   20篇
  1993年   13篇
  1992年   11篇
  1991年   8篇
  1990年   13篇
  1989年   8篇
  1988年   9篇
  1987年   10篇
  1986年   7篇
  1985年   20篇
  1984年   28篇
  1983年   10篇
  1982年   19篇
  1981年   4篇
  1980年   11篇
  1979年   16篇
  1978年   6篇
  1977年   5篇
  1976年   6篇
  1974年   3篇
排序方式: 共有2285条查询结果,搜索用时 359 毫秒
101.
102.
New, deoxyribonucleic acid (DNA) based compounds, functionalized with hexadecyltrimethylammonium chloride (CTMA) and lanthanide hydroxide nanoparticles were synthesized. The spectral measurements suggest that between the DNA‐CTMA complex and the lanthanide (III) ions a chemical interaction takes place. The obtained materials exhibit an improved fluorescence efficiency, showing a potential interest for application in photonics, and more particularly, in light emitting devices. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 613–617, 2016.  相似文献   
103.
Remediation of heavy-metal contamination by biomineralization has become an environmentally very important issue in the last two decades. Here we describe the transformation of amorphous organo-Cr(III) to chromium hydroxide oxide (guyanaite/grimaldiite) by hydrothermal treatment (HTT). First, glycine-Cr(III) was synthesized to serve as a simple model for exploring the conditions favoring HTT. Cell-bound Cr(III) was obtained by the reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] by Bacillus cereus. Then the reduced Cr(III) was chelated by ligands at the cell surface, forming cell-bound Cr(III). Subsequently, HTT was applied to treat cell-bound Cr(III) at different temperatures and for different lengths of time. The results showed that, by this treatment at 200°C for 7 days or at 250°C for 1 day, glycine-Cr(III) was converted to trivalent chromium mineral (guyanaite/grimaldiite), having the form of nanosheets with a length of 10~20 nm and a width of 3~5 nm under the described conditions. Cell-bound Cr(III) could also be converted to guyanaite/grimaldiite at 250°C for 9 days if it was bound by an organic compound more complex than glycine. Our finding showed that organo-Cr(III) could be transformed into minerals by an appropriate hydrothermal process, which is applicable to bioremediation of heavy-metal pollution. Our findings also suggest that organo-Cr(III) may play an important role in the biogeochemistry of chromium.  相似文献   
104.
The Beclin1–VPS34 complex is recognized as a central node in regulating autophagy via interacting with diverse molecules such as ATG14L for autophagy initiation and UVRAG for autophagosome maturation. However, the underlying molecular mechanism that coordinates the timely activation of VPS34 complex is poorly understood. Here, we identify that PAQR3 governs the preferential formation and activation of ATG14L‐linked VPS34 complex for autophagy initiation via two levels of regulation. Firstly, PAQR3 functions as a scaffold protein that facilitates the formation of ATG14L‐ but not UVRAG‐linked VPS34 complex, leading to elevated capacity of PI(3)P generation ahead of starvation signals. Secondly, AMPK phosphorylates PAQR3 at threonine 32 and switches on PI(3)P production to initiate autophagosome formation swiftly after glucose starvation. Deletion of PAQR3 leads to reduction of exercise‐induced autophagy in mice, accompanied by a certain degree of disaggregation of ATG14L‐associated VPS34 complex. Together, this study uncovers that PAQR3 can not only enhance the capacity of pro‐autophagy class III PI3K due to its scaffold function, but also integrate AMPK signal to activation of ATG14L‐linked VPS34 complex upon glucose starvation.  相似文献   
105.
The Gram‐negative bacterium Xanthomonas euvesicatoria (Xcv) is the causal agent of bacterial spot disease in pepper and tomato. Xcv pathogenicity depends on a type III secretion (T3S) system that delivers effector proteins into host cells to suppress plant immunity and promote disease. The pool of known Xcv effectors includes approximately 30 proteins, most identified in the 85‐10 strain by various experimental and computational techniques. To identify additional Xcv 85‐10 effectors, we applied a genome‐wide machine‐learning approach, in which all open reading frames (ORFs) were scored according to their propensity to encode effectors. Scoring was based on a large set of features, including genomic organization, taxonomic dispersion, hypersensitive response and pathogenicity (hrp)‐dependent expression, 5′ regulatory sequences, amino acid composition bias and GC content. Thirty‐six predicted effectors were tested for translocation into plant cells using the hypersensitive response (HR)‐inducing domain of AvrBs2 as a reporter. Seven proteins (XopAU, XopAV, XopAW, XopAP, XopAX, XopAK and XopAD) harboured a functional translocation signal and their translocation relied on the HrpF translocon, indicating that they are bona fide T3S effectors. Remarkably, four belong to novel effector families. Inactivation of the xopAP gene reduced the severity of disease symptoms in infected plants. A decrease in cell death and chlorophyll content was observed in pepper leaves inoculated with the xopAP mutant when compared with the wild‐type strain. However, populations of the xopAP mutant in infected leaves were similar in size to those of wild‐type bacteria, suggesting that the reduction in virulence was not caused by impaired bacterial growth.  相似文献   
106.
107.
A new potential drug aluminum(III)–baicalein complex (ALBC) was synthesized and characterized. The binding mechanisms of baicalein (BC) and ALBC to human serum albumin (HSA) under simulative physiological conditions were investigated, in order to understand the pharmacokinetics of BC and ALBC. Fluorescence spectroscopy results suggested that the binding level of BC is higher than that of ALBC. Results of UV–vis, synchronous fluorescence, 3D fluorescence, circular dichroism and Fourier transform infrared spectroscopic analyses consistently demonstrated that the conformation of HSA was altered when bound to BC or ALBC. The distance between HSA as a donor and BC (or ALBC) as an acceptor was determined via fluorescence resonance energy transfer. The results of competitive experiments and molecular docking studies indicated that BC was located in site I (subdomain IIA) on HSA and that ALBC was bound to HSA mainly within site II (subdomain IIIA). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
108.
109.
Dopamine has been implicated in the regulation of sleep–wake states and the circadian rhythm. However, there is no consensus on the impact of two established dopaminergic gene variants: the catechol-O-methyltransferase Val158Met (COMT Val158Met; rs4680) and the dopamine D4 receptor Exon III variable-number-of-tandem-repeat polymorphism (DRD4 VNTR). Pursuing a multi-method approach, we examined their potential effects on circadian preferences, arousal regulation and sleep. Subjects underwent a 7-day actigraphy assessment (SenseWear Pro3), a 20-minute resting EEG (analyzed using VIGALL 2.0) and a body mass index (BMI) assessment. Further, they completed the Morningness–Eveningness Questionnaire (MEQ), the Epworth Sleepiness Scale (ESS) and the Pittsburgh Sleep Quality Index (PSQI). The sample comprised 4625 subjects (19–82 years) genotyped for COMT Val158Met, and 689 elderly subjects (64–82 years) genotyped for DRD4 VNTR. The number of subjects varied across phenotypes. Power calculations revealed a minimum required phenotypic variance explained by genotype ranging between 0.5% and 1.5% for COMT Val158Met and between 3.3% and 6.0% for DRD4 VNTR. Analyses did not reveal significant genotype effects on MEQ, ESS, PSQI, BMI, actigraphy and EEG variables. Additionally, we found no compelling evidence in sex- and age-stratified subsamples. Few associations surpassed the threshold of nominal significance (p < .05), providing some indication for a link between DRD4 VNTR and daytime sleepiness. Taken together, in light of the statistical power obtained in the present study, our data particularly suggest no impact of the COMT Val158Met polymorphism on circadian preferences, arousal regulation and sleep. The suggestive link between DRD4 VNTR and daytime sleepiness, on the other hand, might be worth investigation in a sample enriched with younger adults.  相似文献   
110.
Aluminium oxide (Al2O3) has widely been used for catalysts, insulators, and composite materials for diverse applications. Herein, we demonstrated if γ‐Al2O3 was useful as a luminescence support material for europium (Eu) (III) activator ion. The hydrothermal method and post‐thermal treatment at 800°C were employed to synthesize Eu(III)‐doped γ‐Al2O3 nanofibre structures. Luminescence characteristics of Eu(III) ions in Al2O3 matrix were fully understood by taking 2D and 3D‐photoluminescence imaging profiles. Various sharp emissions between 580 to 720 nm were assigned to the 5D07FJ (J = 0, 1, 2, 3, 4) transitions of Eu(III) activators. On the basis of X‐ray diffraction crystallography, Auger elemental mapping and the asymmetry ratio, Eu(III) ions were found to be well doped into the γ‐Al2O3 matrix at a low (1 mol%) doping level. A broad emission at 460 nm was substantially increased upon higher (2 mol%) Eu(III) doping due to defect creation. The first 3D photoluminescence imaging profiles highlight detailed understanding of emission characteristics of Eu(III) ions in Al oxide‐based phosphor materials and their potential applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号